A¹³³Cs NMR Spin-Lattice Relaxation Study in Incommensurate Cs₂CdI₄

Koh-ichi Suzuki, Shin'ichi Ishimaru, and Ryuichi Ikeda Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan Reprint requests to Dr. S. I.; Fax: 81-298-53-6503, E-mail: ishimaru@staff.chem.tsukuba.ac.jp

Z. Naturforsch. **55 a.** 339–342 (2000); received August 27, 1999

Presented at the XVth International Symposium on Nuclear Quadrupole Interactions, Leipzig, Germany, July 25 - 30, 1999.

¹³³Cs NMR spin-lattice relaxation times(T_1) in crystalline Cs₂CdI₄ were measured at 225 - 373 K. The critical exponent ζ of T_1 observed near the normal-incommensurate transition in the normal phase was determined to be 0.62 \pm 0.03, in good agreement with the predicted value for three-dimensional XY-model. The frequency dependent T_1 in the incommensurate phase could be explained by the fluctuation of amplitudon and small gap phason.

Key words: 133 Cs NMR; T_1 ; Incommensurate; Phase Transition; Critical Exponent.